A discontinuous Galerkin method for the Vlasov–Poisson system
نویسندگان
چکیده
منابع مشابه
A discontinuous Galerkin method for the Vlasov-Poisson system
A discontinuous Galerkin method for approximating the Vlasov-Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function. The performance of the method is investigated by computing f...
متن کاملA multilevel discontinuous Galerkin method
A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion problem, for which an error estimate i...
متن کاملA Relation between the Discontinuous Petrov--Galerkin Method and the Discontinuous Galerkin Method
This paper is an attempt in seeking a connection between the discontinuous Petrov– Galerkin method of Demkowicz and Gopalakrishnan [13,15] and the popular discontinuous Galerkin method. Starting from a discontinuous Petrov–Galerkin (DPG) method with zero enriched order we re-derive a large class of discontinuous Galerkin (DG) methods for first order hyperbolic and elliptic equations. The first ...
متن کاملA Multiscale Discontinuous Galerkin Method
We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Compositio...
متن کاملConvergence of the Discontinuous Galerkin Method for Discontinuous Solutions
We consider linear first order scalar equations of the form ρt + div(ρv) + aρ = f with appropriate initial and boundary conditions. It is shown that approximate solutions computed using the discontinuous Galerkin method will converge in L[0, T ;L(Ω)] when the coefficients v and a and data f satisfy the minimal assumptions required to establish existence and uniqueness of solutions. In particula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2012
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2011.09.020